in 

NEW PELCO BioWave® Pro+ Microwave Tissue Processor
go to The complete listing of Microwave Processor Equipment and Accessories


 

The PELCO BioWave® Pro is the most complete laboratory microwave system on the market. Standard features are listed below.

  • Built-in vacuum
  • Built-in Fume extraction
  • Built-in water circulation (the load cooler)
  • Built-in magnetic stirrer
  • Touchscreen process control and programmability
  • Pre-loaded protocols for EM tissue processing and immunostaining
  • Temperature-restrictive temperature probe and stand
  • Built-in quick-disconnect fittings for fluid circulation
PELCO Biowave Pro Microwave Tissue Processor for specimen preparation for microscopy

Ordering Information for the PELCO BioWave® Pro System:

(also available is the PELCO BioWave® Pro Microwave System in Various Application Kits)

Manufactured in USA

Prod # Description Unit Price Order / Quote
36500 PELCO BioWave® Pro Standard System, 110VAC each P.O.R.
Qty:
includes: Temperature Probe and Stand, Exhaust Connectors and Tubing for venting, 2 Quick-Disconnect Fittings with hoses, Manual, Safety Instructions, Processing Protocols



PELCO BioWave® Pro Specifications

Microwave power range Continuous power settings from 100-750 Watts
Microwave frequency 2.45 Ghz
Microwave power control Programmable controller with 10 modifiable presets
Function control 6" Touch screen user interface
Temperature control ± 1°C for most aqueous solutions
Cooling internal Integrated ambient water cooling system
Cooling external (optional) PELCO SteadyTemp™: 450W chilled cooling system
Magnetic stirrer Integrated, 0-300rpm speed
Exhaust 110cfm capacity
Venting Automatic when door is opened
Vacuum system 20" Hg, 3 selectable modes
Air bubbler Up to 0.8ltr/min with 2.5" column of water pressure
Protocol management Protocols can be stored, using a total of 200 steps
Certification ETL/CE
Dimensions 55.3 W x 51.4 D x 54.6 H cm (21.75" x 20.25" x 21.5")
Weight 37.7kg (83 lbs)
Power required 36500: 15A/115VAC;   36500-230: 10A/230VAC
PELCO SteadyTemp Pro Digital and the PELCO BioWave Pro microwave processosr Continuous heat removal during microwave exposure ensures a constant temperature environment (∆T=0°C) during processing. This environment can be maintained for minutes, hours, days or weeks.

Benefits of the PELCO BioWave® Pro System

Superior Microwave Process Control - True Power™
True Power™, not pulsed or percentage power, has made live cell labeling possible. Continuous power outputs from 100 to 750W are programmable.
Superior Microwave Process Control – PELCO ColdSpot® Technology
The PELCO ColdSpot® technology removed the cooking attributes associated with other laboratory microwave devices. Gentle heating has replaced rapid heating to insure precise process control.
Programmed Processing
Pre-programmed protocols are supplied with the system making it the perfect microwave device for multi-user facilities.
True Ease of Operation
True Power™, ColdSpot technology and programmability provide the tools to make microwave processing easier than conventional methods.
Processing Results Based on 2 Decades of Development Experience
The recent microwave literature is a testament to the soundness of our technology and the validity of the scientific approach we took for microwave processing.
Reduced Turnaround Times
Tissue processing for electron microscopy: <45 minutes
Immunolabeling (fluorescent): <40 minutes for 1° and 2° antibodies (Ab)  
Immunolabeling (chromagen): <60 minutes for 1°, 2° Ab's and 3° step
Decalcification with EDTA: >5-fold time reduction
Formalin fixation: <1-hour to achieve the fixation of 24 hours
Tissue processing for paraffin: <1.25 hours for tissues 2mm thick

Gentle Processing

Control of the microwave environment to include temperature, power, uniformity and sample heating rate has made it possible for Ted Pella, Inc. to:

  1. develop the first laboratory microwave to label living cells and embryos
  2. develop the first automated microwave system to rapidly decalcify bone
  3. develop the first automated microwave system to fix fresh tissue in formalin
  4. develop the most versatile laboratory microwave on the market today

Recent Microwave Literature:

Relevant to the PELCO BioWave® and other PELCO® Microwave Systems

  1. Ahmari, S.E., Buchanan, J., Smith S.J. (2000) Assembly of presynaptic active zones from cytoplasmic transport packets. Nat. Neurosci., 3:445-451.
  2. Arana-Chavez, V.E., Nanci, A. (2001) High-resolution immunocytochemistry of noncollagenous matrix proteins in rat mandibles processed with microwave irradiation. J. Histochem. Cytochem., 49:1099-1110.
  3. Bohr, H., and Bohr J. (2000) Microwave-enhanced folding and denaturation of globular proteins. Phys Rev E 61:4310-4314.
  4. Buchanan, J. (2004) Microwave processing of drosophila tissues for electron microscopy. Microsc. Today, 12(6):42.
  5. Chicoine, L., and Webster, P. (1998) The effect of microwave irradiation on antibody labeling efficiency when applied to ultrathin cryosections through fixed biological material. Micros. Res. Tech. 42:24-32.
  6. Cunningham, C.D.III., Schulte, B.A., Bianchi, L.M., Weber, P.C., Schmiedt, B.A. (2001) Microwave decalcification of human temporal bones. Laryngoscope, 111:278-282.
  7. Demaree, R.S., Jr., Giberson, R.T., Smith, R.L. (1995) Routine microwave polymerization of resins for transmission electron microscopy. Scanning 17(Suppl. 5):25-26.
  8. Ferris, A.M., Giberson, R.T., Sanders, M.A., Day, J.R. (2009) Advanced Laboratory techniques for sample processing and immunolabeling using microwave radiation. J. Neurosci. Methods 182(2):157-164.
  9. Fiala, J.C., Feinberg, M., Popov, V., Harris, K.M. (1998) Synaptogenesis via dendritic filopodia in developing hippocampal area CA1. J. Neurosci., 18:8900-8911.
  10. Fox, N.E., Demaree, R.S.Jr. (1999) Quick bacterial microwave fixation technique for scanning electron microscopy. Micros. Res. Tech. 46:338-339.
  11. Gagna, C.E., Kuo, H-R, Chan, N.J., Mitacek, E.J., Spivak, A., Pasquariello, T.D., Balgobin, C., Mukhi, R., Lambert, W.C. (2007) Novel DNA staining method and processing technique for the quantification of undamaged double-stranded DNA in epidermal tissue sections by PicoGreen probe staining and microspectrophotometry. J. Histochem. Cytochem. 55:999-1014.
  12. Galvez, J.J., Adamson, G., Sanders, M.A., Giberson, R.T. (2006) Microwave tissue processing techniques: their evolution and understanding. Microscopy and Analysis 20:23-24.
  13. Galvez, J.J., Giberson, R.T., Cardiff, R.D. (2006) The role of microwave radiation in reducing formaldehyde fixation times. The J. Histotechnol. 29:113-121.
  14. Galvez, J.J., Giberson, R.T., Cardiff, R.D. (2004) Microwave mechanisms – the energy/heat dichotomy. Microsc. Today, 12(2):18-23.
  15. Gerrity, R.G., Forbes, G.W. (2003) Microwave processing in diagnostic electron microscopy. Microsc. Today, 11(6):38-41.
  16. Gerrity, R.G., Forbes G.W. (2002) Microwave processing in diagnostic electron microscopy. Microsc Microanal 8(Suppl 2):152-153.
  17. Giberson, R.T., Sanders, M.A. (2009) Benefits of microwave-assisted processing go beyond time savings. Microsc. Today, 17(5):28-33.
  18. Giberson, R.T., Austin, R.L., Charlesworth, J., Adamson, G., Herrera, G.A. (2003) Microwave and digital imaging technology reduce turnaround times for diagnostic electron microscopy. Ultrastruct. Pathol. 27:187-196.
  19. Giberson, R.T., Demaree, R.S., Jr., Editors, 2001, Microwave Techniques and Protocols, Humana Press, Totowa, NJ.
  20. Giberson, R.T., Elliott, D.E. (2001) Microwave-assisted formalin fixation of fresh tissue: A comparative study. In Giberson R.T., Demaree R.S.Jr., eds. Microwave Techniques and Protocols, Totowa, NJ, Humana Press, pp191-208.
  21. Giberson, R.T., Demaree, R.S., Jr. (1999) Microwave processing techniques for electron microscopy: A four-hour protocol. In: Electron Microscopy Methods and Protocols. N. Hajibagheri, ed. Humana Press, Inc., Totowa, NJ.
  22. Giberson, R.T., Demaree, R.S., Jr., Nordhausen, R.W. (1997) Four-hour processing of clinical/diagnostic specimens for electron microscopy. J. Vet. Diagn. Invest., 9:61-67.
  23. Giberson, R.T., Smith, R.L., Demaree, R.S. (1995) Three hour microwave tissue processing for transmission electron microscopy: from unfixed tissues to sections. Scanning 17(suppl. 5):26-27.
  24. Giberson, R.T., Demaree, R.S., Jr. (1995) Microwave fixation: Understanding the variables to achieve rapid reproducible results. Microsc. Res. Tech., 32:246-254.
  25. Jonas, E.A., Buchanan, J., Kaczmarek, L.K. (1999) Prolonged Activation of mitochondrial conductances during synaptic transmission. Science, 286:1347-1350.
  26. Jontes, J.D., Buchanan, J., Smith, S.J. (2000) Growth cone and dendrite dynamics in zebrafish embryos: early events in synaptogenesis imaged in vivo. Nat. Neurosci., 3:231-237.
  27. Kalinec, F., Webster, P., Maricle, A., Guerrero, D., Chakravarti, D.N., Chakravarti, G., Gellibolian, R., Kalinec, G. (2009) Glucocorticoid-stimulated, transcription-independent release of annexin A1 by cochlear Hensen cells. Br. J. Pharmacol., 158(7):1820-1834.
  28. Keithley, E.M.., Truong, T., Chandronait, B., Billings, P.B. (2000) Immunohistochemistry and microwave decalcification of human temporal bones. Hearing Research, 148:192-196.
  29. Lonsdale, J.E., McDonald, K.L., Jones, R.L. (1999) High pressure freezing and freeze substitution reveal new aspects of fine structure and maintain protein antigenicity in barley aleurone cells. The Plant Journal, 17:221-229.
  30. Madden, V.J. (1998) Microwave processing of cell monolayers in situ for post-embedding immunocytochemistry with retention of ultrastructure and antigenicity. Microsc. Microanal. 4(Suppl 2:Proceedings):854-55.
  31. Madden, V.J., Henson, M.M. (1997) Rapid decalcification of temporal bones with preservation of ultrastructure. Hearing Research, 111;76-84.
  32. Massa, L.F., Arana-Chavez, V.E. (2000) Ultrastructural preservation of rat embryonic dental tissues after rapid fixation and dehydration under microwave irradiation. Eur. J. Oral Sci., 108:74-77.
  33. Micheva, K.D., Holz, R.W., Smith, S.J. (2001) Regulation of presynaptic phosphatidylinositol 4,5-biphosphate by neuronal activity. J. Cell Biol., 154:355-368.
  34. Munoz, T.E., Giberson, R.T., Demaree, R., Day J.R. (2004) Microwave-assisted immunostaining: a new approach yields fast and consistent results. J. Neurosci. Methods, 137:133-139.
  35. Paupard, M-C., Miller, A., Grant, B., Hirsh, D., Hall, D.H. (2001) Immuno-EM localization of GFP-tagged yolk proteins in C. elegans using microwave fixation. J. Histochem. Cytochem., 49:949-956.
  36. Petrali, J.P., Mills, K.R. (1998) Microwave-assisted immunoelectron microscopy of skin. Microsc. Microanal. 4(Suppl 2:Proceedings):1114-15.
  37. Rangell, L.K., Keller, G-A. (2000) Application of microwave technology to the processing and immunolabeling of plastic-embedded and cryosections. J. Histochem. Cytochem., 48:1153-1159.
  38. Rassner, U.A., Crumrine, D.A., Nau, P., Elias, P.M. (1997) Microwave incubation improves lipolytic enzyme preservation for ultrastructural cytochemistry. Histochem. J., 29:387-392.
  39. Ruzin, S.E. (1999) Plant Microtechnique and Microscopy, Oxford University Press, New York.
  40. Schichnes, D., Nemson, J., Sohlberg, L., Rusin, S.E. (1999) Microwave protocols for paraffin microtechnique and in situ localization in plants. Microsc. Microanal. 4:491-496.
  41. Tinling, S.P., Kullar, R., Giberson, R.T. (2002) Microwave assisted decalcification with recirculation of temperature controlled solutions. Microsc. Microanal. 8(Suppl.2:Proceedings):148-149.
  42. Tinling, S.P. Giberson, R.T., Kullar, R.S. (2004) Microwave exposure increases bone demineralization rate independent of temperature. J. Microsc., 215:230-235.
  43. Tyler, W.J., Pozzo-Miller, L.D. (2001) BDNF enhances quantal neurotransmitter release and increases the number of docked vesicles at the active zones of hippocampal excitatory synapses. J. Neurosci., 21:4249-4258.
  44. von Dohlen, C.D., Kohler, S., Alsop, S.T., McManus, W.R. (2001) Mealybug beta-proteobacterial endosymbionts contain gamma-proteobacterial symbionts. Nature, 412:433-436.
  45. Webber, P.C., Cunningham, C.D.III., Schulte, B.A. (2001) Potassium Recycling pathways in the human cochlea. Laryngoscope, 111:1156-1165.
  46. Webster, P. (2007) Microwave-assisted processing and embedding for transmission electron microscopy In: Kuo J. (ed.) Methods in Molecular Biology: Electron Microscopy – Methods and Protocols, Vol. 369, Chapter 4, 2nd Ed., Humana Press, Inc. Totowa, NJ, pp. 257-289.
  47. Wendt KD, Jensen CA, Tindall R, Katz ML (2004) Comparison of conventional and microwave-assisted processing of mouse retinas for transmission electron microscopy. J Microsc 214:80-88